
MPI Communication 
Performance of a Shock 

Hydrodynamics Application

Ryan Goodner

Prof. Patrick G. Bridges

UNM Computer Science



Background

FIESTA (Fast InterfacES and Transport in the Atmosphere) is a UNM code by Brian Romero for modeling shock 
hydrodynamics. It is a MPI based, GPU accelerated code written in C++ with Kokkos. The code was recently reviewed and 
revised by Prof. Bridges to investigate potential performance improvements related to MPI communications.

Code changes:
1. Waitall pattern was changed to require one instead of three waits per unit of computation.
2. Refactored original code in an object-oriented way to enable three distinct MPI patterns to be selected at run-time.

Three MPI Patterns:

2. GPU-Aware
i. Pack data into 

contiguous memory 
on GPU

ii. GPU aware send

3. GPU-Type
i. GPU aware send using 

MPI types

1. Host
i. Pack data into contiguous 

memory on GPU
ii. Copy data from 

GPU memory to CPU memory
iii. Send



Which tools and techniques can be used to measure and observe 
MPI communication performance?

1. Measuring run times
2. Profiling (passive and instrumented)
3. Tracing



Measuring run times

Plotting of run times gathered via application output is a good first step to identify overall performance. These plots 
were created from the total run times reported in the application output.

From these plots we find that there is a large performance penalty (~400x) to using the gpu-type pattern. We can also 
see that host and gpu-aware have similar performance, which are also both slightly faster than the original code.

gpu-type

host, gpu-aware, original

original

host, gpu-aware



Profiling (passive)
Profiling is a good next step to identify where in the application behavior changes have occurred and identify potential 
targets for optimization.

The perf events flame graphs show how the gpu-type code is dominated by PMPI_Waitall and cudaMemcpy, while 

the gpu-aware code spends comparatively little time in these same sections.

gpu-aware gpu-type



Profiling (instrumented)

The TAU bar graphs show how the gpu-type code is dominated by MPI_Waitall, while the gpu-aware code spends a 
larger portion of it's time doing calculations.

gpu-aware gpu-type



Tracing
MPI tracing is another method to dig deeper into specifics of communication behavior. Jumpshot is a powerful tool 
for visualizing MPI tracing data.

The reduction from three waits per unit of computation to 
one wait can be easily seen here with Jumpshot

Using the same time scale shows that gpu-aware is 
completing computation faster than gpu-type b/c gpu-type 
spends much more time in MPI_Waitall and MPI_Isend.

gpu-aware gpu-typehostoriginal



References & Acknowledgements

References
• Using LC's Sierra Systems, https://hpc.llnl.gov/training/tutorials/using-lcs-sierra-system
• Flame Graphs and Linux Perf Events, https://www.brendangregg.com/flamegraphs.htm
• TAU, https://www.cs.uoregon.edu/research/tau/home.php
• Jumpshot, https://www.mcs.anl.gov/research/projects/perfvis/software/viewers/jumpshot-

4/usersguide.html

Acknowledgements
• Prof. Amanda Bienz – For helping me learn how to use HPC clusters and debugging builds
• Brian Romero – Author of FIESTA
• This work was [partially] supported by the U.S. Department of Energy's National Nuclear 

Security Administration (NNSA) under the Predictive Science Academic Alliance Program (PSAAP-III), 
Award #DE-NA0003966

http://ushttps/hpc.llnl.gov/training/tutorials/using-lcs-sierra-system
https://www.brendangregg.com/flamegraphs.html
https://www.cs.uoregon.edu/research/tau/home.php
https://www.mcs.anl.gov/research/projects/perfvis/software/viewers/jumpshot-4/usersguide.html

